

Analog Communication Systems (ELE 280)

LEC (03) Full AM (DSBLC/DSBFC)

Dr/ Moataz M. Elsherbini motaz.ali@feng.bu.edu.eg

LECTURE OUTLINES

Content

- 1 Review on modulation
- 2 Types of Amplitude Modulation
- 3 DSBFC
 - (a) Block diagram
 - (b) Mathematical representation of Modulated Signal
 - (c) Time and Frequency Spectrum of AM wave
 - (d) USB , LSB and BW
 - (e) AM Voltage Distribution
 - (f) AM Power Distribution
 - (g) Modulation index
 - (h) DSCFC summary
 - (i) Modulators techniques
 - (k) Demodulators techniques

1 - Review on modulation

Consider the carrier signal below:

 $s_{c}(t) = A_{c}(t) \cos(2\pi f_{c}t + \theta)$

- Changing of the <u>carrier amplitude A_c(t)</u> produces
 Amplitude Modulation signal (AM)
- Changing of the carrier <u>frequency f</u>, produces
 Frequency Modulation signal (FM)
- 3. Changing of the carrier <u>phase θ </u> produces **Phase Modulation signal (PM)**

2 - Types of Amplitude Modulation

Amplitude Modulation

Amplitude Modulation

Types of Amplitude Modulation (AM)

- (1) Double Sideband with full/large carrier (DSBFC)(DSBLC) (ordinary AM): This is the most widely used type of AM modulation. In fact, all radio channels in the AM band use this type of modulation.
- (2) Suppressed carrier (SC)
- (i) Double Sideband Suppressed Carrier (DSBSC): This is the same as the AM modulation above but without the carrier.
- (ii) Single Sideband (SSB): In this modulation, only half of the signal of the DSBSC is used.

DSBFC or DSBLC

(a) DSBFC block diagram

(b) Mathematical representation for Modulated Signal

Mathematical representation for DSBFC

1 The <u>carrier signal</u> is

$$s_c(t) = A_c \cos(\omega_c t)$$
 where $\omega_c = 2\pi f_c$

2 In the same way, a <u>modulating signal (information</u> <u>signal</u>) can also be expressed as

$$s_m(t) = A_m \cos \omega_m t$$

Mathematical representation for DSBFC

3 The amplitude-modulated wave can be expressed as

$$s(t) = [A_c + s_m(t)]\cos(\omega_c t)$$

4 By substitution

$$s(t) = [A_c + A_m \cos(\omega_m t)] \cos(\omega_c t)$$

5 The modulation index.

$$m = \frac{A_m}{A_c}$$

Mathematical representation for DSBFC

6 Therefore The full AM signal may be written as

$$s(t) = A_c(1 + m\cos(\omega_m t))\cos(\omega_c t)$$

$$\cos A \cos B = 1/2[\cos(A+B) + \cos(A-B)]$$

$$s(t) = A_c(\cos\omega_c t) + \frac{mA_c}{2}\cos(\omega_c + \omega_m)t + \frac{mA_c}{2}\cos(\omega_c - \omega_m)t$$

(c) Time and Frequency Spectrum of AM wave

Time Spectrum of AM wave

$$s(t) = A_c(\cos\omega_c t) + \frac{mA_c}{2}\cos(\omega_c + \omega_m)t + \frac{mA_c}{2}\cos(\omega_c - \omega_m)t$$

The frequency spectrum of AM waveform contains three parts:

A component at the carrier frequency fc
 An upper side band (USB), whose highest frequency component is at fc+fm

3. A lower side band (LSB), whose highest frequency component is at fc-fm

The bandwidth of the modulated waveform is twice the information signal bandwidth.

Time and Frequency Spectrum of AM wave

(d) USB , LSB and BW

USB , LSB and BW

(e) AM Voltage Distribution

AM Voltage Distribution

(f) AM Power Distribution

AM Power Distribution

The power used to transmitte information for simple AM is thus :

$$\eta_{AM} = \frac{P_{Info}}{P_T} = \frac{\frac{A_c^2 m^2}{8R} + \frac{A_c^2 m^2}{8R}}{\frac{A_c^2}{2R} + \frac{A_c^2 m^2}{8R} + \frac{A_c^2 m^2}{8R}} = \frac{\frac{m^2}{4} + \frac{m^2}{4}}{1 + \frac{m^2}{4} + \frac{m^2}{4}} = \frac{2m^2}{4 + 2m^2} = \frac{m^2}{2 + m^2}$$

When m = 1

$$\eta_{AM} = \frac{1}{3} \iff \frac{2}{3} = 66.6\%$$
 Power Lost

Therefore, simple AM signal is not power-efficienct.

$$\eta_{AM} < 33.3\% = \sup \eta_{AM}$$

AM Power Distribution

(g) Modulation index

Modulation index

- m is merely defined as a parameter, which determines the amount of modulation.
- What is the degree of modulation required to establish a desirable AM communication link?
- Answer is to maintain m<1.0(m<100%).
- This is important for successful retrieval of the original transmitted information at the receiver end.

Coefficient of Modulation and Its Percentage

(g) Solved Example

Solved Example

Q. The modulating signal 20 cos $(2\pi * 10^3 t)$ is used to modulate a carrier signal 40 cos $(2\pi * 10^4 t)$. Find the modulation index, percentage modulation, frequencies of sideband components and their amplitudes. What is the bandwidth of the modulated signal ?

Given:
$$e_M = 20 \cos (2\pi * 10^3 t)$$

 $e_C = 40 \cos (2\pi * 10^4 t)$
To Find: m, % m, fuse, flse, Amplitude of each side band and the bandwidth
required.
Formula: $e_m = E_m \cos \omega_m t$
 $e_C = E_C \cos \omega_C t$
 $m = \frac{E_m}{E_C}$
BW = 2fm

Solved Example

Thank you for your attention

Dr. Moataz Elsherbini